A method of tabulating the numbertheoretic function $g(k)$
Authors:
Renate Scheidler and Hugh C. Williams
Journal:
Math. Comp. 59 (1992), 251257
MSC:
Primary 11Y70; Secondary 11N36
DOI:
https://doi.org/10.1090/S0025571819921134737X
MathSciNet review:
1134737
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: Let $g(k)$ be the least integer $> k + 1$ such that all prime factors of $\left ( {\begin {array}{*{20}{c}} {g(k)} \\ k \\ \end {array} } \right )$ are greater than k. The function $g(k)$ appears to show quite irregular behavior and is hard to compute. This paper describes a method of computing $g(k)$, using sieving techniques, and provides a table of values of $g(k)$ for $k \leq 140$.

L. E. Dickson, History of the theory of numbers, vol. 1, Chelsea, New York, 1966.
E. F. Ecklund, Jr., P. Erdős, and J. L. Selfridge, A new function associated with the prime factors of $\left ( {\begin {array}{*{20}{c}} n \\ k \\ \end {array} } \right )$, Math. Comp. 28 (1974), pp. 647649.
P. Erdős, Some problems in number theory, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London, 1971, pp. 405414.
 P. Erdos, Uses of and limitations of computers in number theory, Computers in mathematics (Stanford, CA, 1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New York, 1990, pp. 241–260. MR 1068538
 A. J. Stephens and H. C. Williams, An open architecture number sieve, Number theory and cryptography (Sydney, 1989) London Math. Soc. Lecture Note Ser., vol. 154, Cambridge Univ. Press, Cambridge, 1990, pp. 38–75. MR 1055399
Retrieve articles in Mathematics of Computation with MSC: 11Y70, 11N36
Retrieve articles in all journals with MSC: 11Y70, 11N36
Additional Information
Article copyright:
© Copyright 1992
American Mathematical Society